
www.elsevier.com/locate/jcp

Journal of Computational Physics 194 (2004) 575–587
Fast methods for resumming matrix polynomials
and Chebyshev matrix polynomials

WanZhen Liang a,b,1, Roi Baer c,1, Chandra Saravanan a,1, Yihan Shao a,
Alexis T. Bell b, Martin Head-Gordon a,*,1

a Department of Chemistry, University of California, Berkeley, CA 94720, USA
b Department of Chemical Engineering, University of California, Berkeley, CA 94720, USA

c Department of Physical Chemistry, the Hebrew University, Jerusalem 91904, Israel

Received 26 February 2003; received in revised form 20 August 2003; accepted 28 August 2003
Abstract

Fast and effective algorithms are discussed for resumming matrix polynomials and Chebyshev matrix polynomials.

These algorithms lead to a significant speed-up in computer time by reducing the number of matrix multiplications

required to roughly twice the square root of the degree of the polynomial. A few numerical tests are presented, showing

that evaluation of matrix functions via polynomial expansions can be preferable when the matrix is sparse and these fast

resummation algorithms are employed.

� 2003 Elsevier Inc. All rights reserved.
1. Introduction

Functions of a matrix can be defined by their series expansions, such as the matrix exponential:

eX ¼ 1þ Xþ 1

2
X2 þ 1

3!
X3 þ � � � : ð1Þ

It is relatively unusual for a matrix function to be evaluated this way because typically it is more efficient

and precise to employ the eigenvectors and eigenvalues of X, if it is diagonalizable. For example, if X is

Hermitian, i.e., XT ¼ X, we can evaluate the matrix function eX as

eX ¼ UexUy; ð2Þ

where U are the eigenvectors and x the diagonal matrix of eigenvalues of matrix X.
*Corresponding author. Tel.: +1-510-642-5957; fax: +1-510-643-1255.

E-mail address: mhg@cchem.berkeley.edu (M. Head-Gordon).
1 Those authors contributed equally.

0021-9991/$ - see front matter � 2003 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2003.08.027

mail to: mhg@cchem.berkeley.edu

576 W. Liang et al. / Journal of Computational Physics 194 (2004) 575–587
However, some situations arise where evaluation of the series is actually preferable. The particular case

we have in mind is where the dimension of X is very large, and in addition (or as a consequence) X is very

sparse. Then sparse matrix multiplication methods can be used to evaluate the products entering the matrix
polynomial. The resulting computational effort can then in principle increase only linearly with the di-

mension of the matrix, if its bandwidth is constant. By contrast, explicitly obtaining the eigenvalues and

eigenvectors cannot scale linearly – indeed it is cubic scaling if standard linear algebra routines are em-

ployed. For example, this situation arises in formulating linear scaling algorithms to perform tight-binding

or Kohn–Sham density functional theory calculations on very large molecules [1–7], in evaluation of time-

evolution operator e�iHt [8], and the calculation of Boltzmann factors and partition functions of very large

molecules in computational physics [9–11].

In this paper, we report fast algorithms for summing matrix and Chebyshev matrix polynomials. The
problem is to minimize the computer time required to perform the sum to a given power, Npol, the degree of

the polynomial. To an excellent approximation this is equivalent to minimizing the number of matrix

multiplications, since the cost of matrix multiplications completely dominates the cost of matrix additions.

The other degree of freedom that is available is to store multiple intermediate quantities to permit reduction

of the matrix multiplication effort.

Simple term-by-term evaluation of a matrix polynomial of degree Npol requires Npol � 1 matrix multi-

plications. However it is possible to do substantially better, as has been shown in a number of papers where

fast algorithms have been reported for resumming matrix polynomials with fewer matrix multiplications
[12–16]. Perhaps the most effective algorithm was suggested by Paterson and Stockmeyer [14], which re-

quires only Oð
ffiffiffiffiffiffiffiffi
Npol

p
Þ nonscalar multiplications to evaluate polynomials of degree Npol. These authors also

presented proofs that at least
ffiffiffiffiffiffiffiffi
Npol

p
nonscalar multiplications are required to resum a polynomial of degree

Npol. The algorithm has practical application in the evaluation of matrix polynomials with scalar coefficients

and offers huge improvement over simple term-by-term evaluation, at the expense of requiring more stored

matrices. Storage of Oð
ffiffiffiffiffiffiffiffi
Npol

p
Þmatrices is required in this algorithm, where N is the dimension of the matrix

X. Van Loan [15] later showed how this procedure could be implemented with greatly reduced storage,

although significantly more matrix multiplies were required.
In the following section (Section 2), we review the algorithm of Paterson and Stockmeyer [14] and

identify other two algorithms for matrix polynomial evaluation that also scale with
ffiffiffiffiffiffiffiffi
Npol

p
, the square root

of the maximum degree of the polynomial. The coefficient is approximately 2. These two relatively distinct

algorithms turn out to yield very similar matrix multiplication counts but require fewer stored matrices

than Paterson and Stockmeyer�s algorithm.

Another purpose of the paper is to generalize these algorithms for summing simple matrix polynomials

to accelerate the summation matrix series based on Chebyshev matrix polynomials of the form

f ðXÞ ¼
XNpol

i¼0

aiTiðXÞ: ð3Þ

TiðXÞ is the Chebyshev matrix polynomial of degree i, which is recursively defined in terms of Ti�1 and Ti�2,

and a0; a1; . . . ; aN are the scalar coefficients. If the eigenvalues of X lie in the range ½�1; 1�, then Chebyshev

approximations are numerically very stable and they are less susceptible to round-off errors due to limited
machine precision than the equivalent power series [17]. In the context of linear scaling electronic structure

methods, Chebyshev matrix polynomials have therefore been proposed as a more stable and efficient al-

ternative to simple matrix polynomials [3,18,19]. These generalizations are described in Section 3. They

yield algorithms that are broadly similar to the ones described for matrix polynomials, with differences

arising from the recursion relations associated with Chebyshev matrix polynomials. Detailed application of

this approach to linear scaling electronic structure calculations based on Chebyshev polynomials is

described elsewhere [20].

W.Z. Liang et al. / Journal of Computational Physics 194 (2004) 575–587 577
In Section 4, we present three types of data to characterize the performance of the 3 fast summation

algorithms. First, the number of matrix multiplies, as well as the number of stored intermediates, are re-

ported for polynomials of various degrees. Second, computer time for the evaluation of fast summations is
compared with the time for conventional term-by-term summation on some test matrices. Third, the

computer time for evaluating matrix polynomials by fast summation is compared with evaluation by ex-

plicit diagonalization for the case where the matrix is large and sparse. Finally we conclude in Section 5.
2. Fast methods for resumming matrix polynomials

Three kinds of algorithms are presented to effectively resum matrix polynomials in this section. The
central strategy of these algorithms is the hierarchical decomposition of matrix polynomials into many

blocks and to reuse multiple intermediate quantities to reduce the matrix multiplications.

2.1. Algorithm I – recursive binary subdivision

Algorithm I is based on recursive binary subdivision of a polynomial. It is achieved by the following two

steps.

The first step is to decompose the matrix polynomials according to the hierarchical structure shown in
Fig. 1. We begin at level 0 with a matrix polynomial of the form

PNpol

i¼0 aiX
i. At level 1, it is divided into two

polynomials, where one involves only even polynomial terms and the other involves only odd polynomial

terms:

XNpol

i¼0

aiX
i ¼

XNeven

n¼0

a2nX
2n þ

XNodd

n¼0

a2nþ1X
2nþ1 ¼

XNeven

n¼0

a2nX
n
1 þ X

XNodd

n¼0

a2nþ1X
n
1: ð4Þ

Here Nodd þ Neven ¼ Npol � 1, Xn ¼ ðXn�1Þ2 and X0 ¼ X. Thus the two subpolynomials each advance in

powers of X1 ¼ X2, rather than X. This reduces the number of matrix multiplications by almost a factor of

two. One may continue to divide each subpolynomial into 2 subsubpolynomials at level 2, each advancing

in powers of X2 ¼ X4, and so on. If the maximum level of division isML, the polynomial is divided into 2ML

subpolynomials, where the stopping point ML is determined by a minimum in the number of matrix

multiplications.
Level 0

Level 1

Level 2

Level 3

Fig. 1. Decomposition of a polynomial by Algorithm I.

578 W. Liang et al. / Journal of Computational Physics 194 (2004) 575–587
To see this explicitly, we show the first few divisions for a polynomial of degree Npol ¼ n2ML � 1, where n
is integer. This is a particularly simple choice since it ensures that each intermediate subpolynomial is

exactly the same length. The top level, 0, has n2ML terms, the next level, 1, has n2ML�1 terms, and so on until
the lowest level (ML) for which each subpolynomial has n terms. Thus:

f ðXÞ ¼
Xn2ML�1

i¼0

aiX
i ¼

Xn2ML�1�1

i¼0

a2iX
i
1 þ X

Xn2ML�1�1

i¼0

a2iþ1X
i
1

()

¼
Xn2ML�2�1

i¼0

a4iX
i
2 þ X1

Xn2ML�2�1

i¼0

a4iþ2X
i
2 þ X

Xn2ML�2�1

i¼0

a4iþ1X
i
2

(
þ X1

Xn2ML�2�1

i¼0

a4iþ3X
i
2

)

¼
Xn2L�3�1

i¼0

a8iX
i
3 þ X2

Xn2ML�3�1

i¼0

a8iþ4X
i
3 þ X1

Xn2ML�3�1

i¼0

a8iþ2X
i
3

(
þ X2

Xn2ML�3�1

i¼0

a8iþ6X
i
3

)

þ X
Xn2ML�3�1

i¼0

a8iþ1X
i
3

(
þ X2

Xn2ML�3�1

i¼0

a8iþ5X
i
3 þ X1

Xn2ML�3�1

i¼0

a8iþ3X
i
3

(
þ X2

Xn2ML�3�1

i¼0

a8iþ7X
i
3

))

¼ � � � : ð5Þ

The second step is to evaluate the intermediate matrices, from which we can assemble the subpolyno-
mials (with no extra multiplications for the subpolynomials), and then put back all subpolynomials to-

gether. From Eq. (5), we can infer that Algorithm I requires us to calculate and store

SM ¼ int
Npol þ 1

2ML

� �
þ resþML� 2 ð6Þ

matrices before putting-back-together 2ML subpolynomials (X is excluded in this count). Here res ¼ 1, if

Npol þ 1 > 2ML � intððNpol þ 1Þ=2MLÞ, otherwise res ¼ 0. The stored matrices include a total of ML matrices

Xn with Xn ¼ X 2
n�1 (n ¼ 1; 2; . . . ;ML), and a total of SM–ML matrices Xi

MLXML (i ¼ 1; 2; . . . ; SM–ML). A
total of 2ML � 1 matrix multiplications are required in putting-back-together the 2ML subpolynomials. Thus,

for a polynomial of degree Npol, Algorithm I requires

hMi ¼ int
Npol þ 1

2ML

� �
þ resþMLþ 2ML � 3 ð7Þ

matrix multiplications. hMi can be approximately minimized with the choice:

ML ¼ int
P
2

� �
: ð8Þ

However, this requires to save large number of matrices, and we find that a better compromise between hMi
and SM is to use:

ML ¼ int Pþ1
2

� �
if Npol þ 1 ¼ 2P ;

int P
2

� �
þ 1 if Npol þ 1 > 2P ;

�
ð9Þ

where

P ¼ intðlog2ðNpol þ 1ÞÞ: ð10Þ

As an example, we resum the polynomial of degree Npol ¼ 31. Applying our general expressions above,
we see from Eq. (10) that P ¼ 5, and thus that the optimum choice for the maximum level of division, ML,

is 3. Accordingly, the polynomial is divided three times as

W.Z. Liang et al. / Journal of Computational Physics 194 (2004) 575–587 579
X31
i¼0

aiX
i ¼

X15
i¼0

a2iX
i
1 þ X

X15
i¼0

a2iþ1X
i
1

()
¼

X7

i¼0

a4iX
i
2 þ X1

X7

i¼0

a4iþ2X
i
2

þ X
X7

i¼0

a4iþ1X
i
2

(
þ X1

X7

i¼0

a4iþ3X
i
2

)

¼
X3

i¼0

a8iX
i
3 þ X2

X3

i¼0

a8iþ4X
i
3 þ X1

X3

i¼0

a8iþ2X
i
3

(
þ X2

X3

i¼0

a8iþ6X
i
3

)

þ X
X3

i¼0

a8iþ1X
i
3

(
þ X2

X3

i¼0

a8iþ5X
i
3 þ X1

X3

i¼0

a8iþ3X
i
3

(
þ X2

X3

i¼0

a8iþ7X
i
3

))
: ð11Þ

Eq. (11) shows that the polynomial can be evaluated with a total of 12 matrix multiplications, as also
predicted by Eq. (7). In detail, the matrix multiplications are:

Five intermediate matrices X1, X2, X3, X
2
3 and X3

3, another 7 matrix multiplications caused by putting-

back-together 8 subpolynomials:

F1 ¼
X3

i¼0

a8iX
i
3 þ X2

X3

i¼0

a8iþ4X
i
3;

F2 ¼
X3

i¼0

a8iþ2X
i
3 þ X2

X3

i¼0

a8iþ6X
i
3;

F3 ¼ F1 þ X1F2;

F4 ¼
X3

i¼0

a8iþ1X
i
3 þ X2

X3

i¼0

a8iþ5X
i
3;

F5 ¼
X3

i¼0

a8iþ3X
i
3 þ X2

X3

i¼0

a8iþ7X
i
3;

F6 ¼ F4 þ X1F5;

f ðXÞ ¼ F3 þ XF6:
2.2. Algorithm II – separate subdivision

It is possible that binary subdivision, while very simple and clearly effective, may not be completely

optimal. An alternative that would provide additional flexibility is to initially subdivide the matrix poly-

nomial not into 2 but instead into K separate series. These K subpolynomials could then be further treated

by binary subdivision. Specifically we shall define the maximum level of subdivision of the subpolynomial

as ml ¼ intðp=2Þ where p ¼ log2 intðNpol=K), for an initial K-fold subdivision. If K is set to equal to 2, the

algorithm is same as Algorithm I. If K is set to equal to 3, we shall define the resulting approach as Al-

gorithm II, and we shall investigate for what degrees of polynomial (if any) it improves upon Algorithm I.
Algorithm II is achieved by the following three steps. In the initial step, we divide the matrix polynomial

of degree Npol into three subpolynomials f1, f2, f3 with N1, N2 and N3 terms, respectively, i.e.,

f ðXÞ ¼ f1ðXÞ þ f2ðXÞ þ f3ðXÞ ¼
XN1�1

i¼0

aiX
i þ XN1

XN1�1

i¼0

biX
i

(
þ XN1

XN3�1

i¼0

ciX
i

)
; ð12Þ

580 W. Liang et al. / Journal of Computational Physics 194 (2004) 575–587
where ai ¼ ai, bi ¼ aN1þi and ci ¼ a2N1þi. N1 ¼ N2 ¼ 2ml � intððNpol þ 1Þ=3� 2mlÞ, N3 ¼ Npol þ 1� N1 � N2,

ml ¼ intðp=2Þ and p ¼ intðlog2ðN1ÞÞ.
In the second step, the three subpolynomials

PN1�1

i¼0 aiX
i,
PN1�1

i¼0 biX
i and

PN3�1

i¼0 ciX
i are separately re-

summed by Algorithm I. The maximum level of subdivision for these three subpolynomials is ml. The third

step is to add all subpolynomials together.

As for Algorithm I we evaluate and store the necessary intermediate matrices and then assemble and add

all subpolynomials together. The total number of matrix multiplications for a polynomial of degree Npol by

Algorithm II should be

hMi ¼ intðmaxðN1;N3Þ=2mlÞ þ mlþ 3ð2ml � 1Þ: ð13Þ

There are a total of

SM ¼ intðmaxðN1;N3Þ=2mlÞ þ ml� 2 ð14Þ

intermediate matrices that need to be stored in this approach. The last 2þ 3ð2ml � 1Þ matrix multiplications

are required in putting back together all the subpolynomials. The value of hMi is slightly less than that

required by Algorithm I when Npol þ 1 lies outside the interval between 3� 2P�1 and 22intð
Pþ1
2
Þ (P is defined by

Eq. (10)). If Npol þ 1 lies in that range, then Algorithm II offers no advantage, and we employ Algorithm I
to resum the matrix polynomial.

As an example, we resum the polynomial of degree 31 by Algorithm II. In the initial step involving 3-fold

subdivision, the length of the first two subpolynomials, N1, is equal to 10. Accordingly each of these

subpolynomials will undergo binary subdivision once, as follows from p ¼ 3 and ml ¼ 1. Explicitly, we

have:

X31
i¼0

aiX
i ¼

X9

i¼0

aiX
i þ X10

X9

i¼0

biX
i

()
þ X20

X11
i¼0

ciX
i

()

¼
X4

i¼0

a2iX
i
1 þ X

X4

i¼0

a2iþ1X
i
1 þ X10

X4

i¼0

b2iX
i
1

(
þ X

X4

i¼0

b2iþ1X
i
1

þ X10
X5

i¼0

c2iX
i
1

(
þ X

X5

i¼0

c2iþ1X
i
1

))
: ð15Þ

Eq. (15) shows we only need to calculate a total of 10 matrix multiplications, which is less than that re-

quired by Algorithm I. 5 intermediate matrices are required: X1, X
2
1, X

3
1, X

4
1, and X5

1.
2.3. Algorithm III –
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Npol þ 1

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Npol þ 1

p
scheme

Algorithm III for resumming matrix polynomials is similar to that first described in [14]. A short de-

scription of the algorithm is given here. The basic idea is instead of performing repeated subdivisions, as in

Algorithms I and II, we perform just a single subdivision into a set of SP subpolynomials, which we then

reassemble as efficiently as possible. It requires three steps to be performed.

At first we divide the polynomial of degree Npol into SP subpolynomials (SP ¼ intð
ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p
Þ þ res), i.e.,

f ðXÞ ¼
XN
m¼0

amX
m ¼

XN1�1

i¼0

a0iX
i þ

XSP
n¼2

Xðn�1Þ�nl
XNn

i¼1

an�1
i Xi: ð16Þ

Each subpolynomial except the first and last one includes nl terms (Nn ¼ nl ¼ intðN þ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p
Þ,

1 < n < SP). The first one and last one include nlþ 1 and N � ðSP � 1Þ � nl terms, respectively. Here

W.Z. Liang et al. / Journal of Computational Physics 194 (2004) 575–587 581
res ¼ 1 if N > nl� intð
ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p
Þ, otherwise res ¼ 0. To reduce the evaluation of matrix multiplications, Eq.

(16) can be written in a more efficient way by Horner�s rule as shown in Ref. [14]

f ðXÞ ¼
XN1�1

i¼0

a
0

iX
i þ Xnl

XN2

i¼1

a
1

iX
i

(
þ Xnl

XN3

i¼1

a
2

iX
i

(
þ � � � þ Xnl

XNSP

i¼1

a
SP�1

i Xi

()))
: ð17Þ

To evaluate this expression we first calculate nl� 1 intermediate matrices X2;X3; . . . ;Xnl at the cost of a

single matrix multiply apiece. These matrices needed to be stored, i.e.,

SM ¼ nl� 1: ð18Þ

An additional SP � 1 matrix multiplications are required in the process of constructing the subpolynomials
which are added together to complete evaluation of Eq. (17), for a total of:

M ¼ nlþ SP � 2 ð19Þ

matrix multiplications. Minimizing the value of hMi is the same as minimizing nlþ SP . This is achieved by

the choice SP �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Npol þ 1

p
.

The coefficients entering Eq. (17) can be easily obtained from the input coefficients, ai, as ani ¼ aiþn�nl,

and a
n
i ¼ ani . Van Loan [15] shows how the procedure can be implemented without storage arrays for

X2;X3; . . . ;Xnl. However this involves roughly 50 and therefore is only preferable if there is not enough

memory to hold the intermediates.
To resum the polynomial of degree 31 by Algorithm III, we divide it into 6 subpolynomials and reor-

ganize them as

f ðXÞ ¼
X31
i¼0

aiX
i

¼
X6

i¼0

a0iX
i þ X6

X6

i¼1

a1iX
i þ X12

X6

i¼1

a2iX
i þ X18

X6

i¼1

a3iX
i þ X24

X6

i¼1

a4iX
i þ X30

X1

i¼1

a5iX
i

¼
X6

i¼0

a
0

iX
i þ X6

X6

i¼1

a
1

iX
i

(
þ X6

X6

i¼1

a
2

iX
i

(
þ X6

X6

i¼1

a
3

iX
i

(

þ X6
X6

i¼1

a
4

iX
i þ X6

X1

i¼1

a
5

iX
i

)))
: ð20Þ

It requires 10 matrix multiplications with the optimal choice of nl ¼ 6 and SP ¼ 6. These multiplications

include forming 5 matrices X2, X3, X4, X5,X6 and another 5 matrix multiplications to construct and put

back together all 6 subpolynomials.
3. Fast algorithms for resumming Chebyshev matrix polynomials

In many numerical applications, it is preferable to use Chebyshev matrix polynomials rather than simple
matrix polynomials because of their superior numerical stability. Therefore it is of practical interest to

generalize the fast methods for resumming a simple matrix polynomial discussed above, so that they can be

employed to resum Chebyshev matrix polynomials. The key difference is that because higher Chebyshev

polynomials are defined in terms of lower ones by a two-term recurrence relation rather than a simple

matrix multiplication, the scalar coefficients in the reorganized subpolynomials will now have more com-

plicated definitions in terms of the original coefficients modified by related recurrences.

582 W. Liang et al. / Journal of Computational Physics 194 (2004) 575–587
We will illustrate how the coefficients change here for the three algorithms discussed above, one by one.

The Chebyshev (matrix) polynomial of degree i is denoted as Ti and is defined by the following recursion

relations [17]

T0ðXÞ ¼ I

T1ðXÞ ¼ X

T2ðXÞ ¼ 2X2 � 1

TnþmðXÞ ¼ 2TnðXÞTmðXÞ � Tjn�mjðXÞ:

ð21Þ

To first see how the coefficients of the expansion and polynomials will be changed during the division, let us

begin with the first binary subdivision of a Chebyshev matrix polynomial. The result will be the general-

ization of Eq. (4) from matrix polynomials to Chebyshev matrix polynomials. We obtain:

XNpol

i¼0

aiTiðXÞ ¼
XNeven

n¼0

a2nT2nðXÞ þ
XNodd

n¼0

a2nþ1T2nþ1ðXÞ ¼
XNeven

n¼0

a2nTnðX1Þ þ T1ðXÞ
XNodd

n¼0

a0nTnðX1Þ: ð22Þ

Here we have redefined the Xn as:

Xn ¼ 2Xn�1 � 1 ð23Þ

where X0 ¼ X. Eqs. (22) and (23) follow directly from the recursion relation for Chebyshev polynomials:

T2nðXÞ ¼ Tnð2X2 � 1Þ: ð24Þ

The modified coefficients a0n can also be found from those an by recurrence, with the result being:

a0Nodd
¼ 2a2Noddþ1;

a0n ¼ 2a2nþ1 � a0nþ1; n ¼ Nodd � 1; . . . ; 1;

a00 ¼ a1 �
a02
2
:

ð25Þ

These relations are employed at each level of subdivision that is used, up to the optimal levelML. There is a

1:1 mapping between the number of matrix multiplies required to implement this evaluation of the

Chebyshev matrix polynomial, and the simple matrix polynomial, because evaluation of each of the re-

defined Xn still requires 1 matrix multiply to construct from Eq. (23).

It is advantageous to employ Algorithm II to resum a Chebyshev polynomial of degree Npol when it lies

outside the interval between 3� 2P�1 and 22intððPþ1Þ=2Þ. The first step in Algorithm II is to divide the poly-

nomial into three subpolynomials as

f ðXÞ ¼ f1ðXÞ þ f2ðXÞ þ f3ðXÞ ¼
XN3�1

i¼0

aiTiðXÞ þ TN1
ðXÞ

XN1�1

i¼0

biTiðXÞ
(

þ TN1
ðXÞ

XN3�1

i¼0

ciTiðXÞ
)
: ð26Þ

Here

ci ¼
4a2N1þi; 0 < i < N3;
2a2N1

; i ¼ 0;

�

bi ¼
2aN1þi � 1

2
cN1�i; 0 < i < N2;

aN1
� 1

4
cN1

; i ¼ 0;

�

W.Z. Liang et al. / Journal of Computational Physics 194 (2004) 575–587 583
ai ¼
�2aN1þN2þi; N1 6 i < N3;
2ai � 1

2
bN1�i � 1

4
c2N1�i � 2aN1þN2þi; 0 < i < N1;

a0 � 1
2
c2N1

� a2N1
i ¼ 0

8<
:

and ci ¼ 0 if i > N3 � 1. The sequential steps for resumming three subpolynomials are similar to Algorithm

I.

To resum a Chebyshev polynomial of degree Npol by Algorithm III, the first step is to divide a Chebyshev

polynomial into SP subpolynomials as

f ðXÞ ¼
XSP
n¼1

fnðXÞ ¼
XN1�1

i¼0

c0i TiðXÞ þ
XSP
n¼2

Tðn�1Þ�nlðXÞ
XNn

i¼1

cn�1
i TiðXÞ

¼
XN1�1

i¼0

c
0

i TiðXÞ þ TnlðXÞ
XN2

i¼1

c
1

i TiðXÞ
(

þ TnlðXÞ
XN3

i¼1

c
2

i TiðXÞ
(

þ � � � þ TnlðXÞ
XNSP

i¼1

c
SP�1

i TiðXÞ
()))

:

ð27Þ

Here Nn is the length of the nth subpolynomial. The coefficients change and can be evaluated according to

the following recurrences

cni ¼
2cðSP�1Þ�nlþi; n ¼ SP � 1 and 16 i6NSP ;
2cn�nlþi � cnþ1

nl�i; 16 n < SP � 1 and 16 i < nl;
ci � 1

2
c1nl�i; n ¼ 0 and 06 i < nl;

8<
:

and cnnl ¼ 2cn�nlþ1 � cnþ2
nl (1 < n < SP � 2), c0nl ¼ cnl � 1

2
c2nl, and cSP�1

i ¼ 0 (i > NSP). The coefficients c
n
i can

be calculated by the following relation

c
n
i ¼

XSP�1

mP n

cmi An;m: ð28Þ

Here A is an SP � SP matrix, which is evaluated according to

Am;n ¼
2Am�1;m�1 if m ¼ n;
2Am�1;n�1 � Am;n�2 if m 6¼ n and m6 n� 2; . . . ; 0

�

if nP 3, and A0;0 ¼ 1, A1;1 ¼ 1, A2;2 ¼ 2, A0;2 ¼ �1, and all other elements of the matrix A are equal to 0.

The number of matrix multiplications required to resum a Chebyshev polynomial is equal to that for re-

summing a matrix polynomial of the same degree, as for the other two algorithms.
4. Results and discussion

As the first step in demonstrating the performance of the fast summation methods, we focus on the
numbers of matrix multiplications, hMi, and the number of intermediate matrices that must be saved, SM,

for each algorithm, for a variety of polynomial degrees, Npol. This data is presented in Table 1. We observe

that the values of hMi and SM are far vastly less than Npol þ 1. Indeed it is apparent that the value of hMi in
all three algorithms is approximately equal to � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Npol þ 1

p
for polynomials of high degree.

The values of SM, while smaller in magnitude, are also scaling the same way, showing that the extent of

the price that is being paid for reduced numbers of matrix multiplications in terms of increased storage.

Comparing the value of hMi in the three algorithms shows that Algorithm III requires the smallest number

of matrix multiplications. However, it requires storing more intermediate matrices than Algorithm I or II.

Table 1

The polynomial length Npol þ 1, maximum level of division ML, total number of matrix multiplications hMi and the number of storing

matrices SM are listed

Npol þ 1 Algorithm I Algorithm II Algorithm III

ML SM hMi ml SM hMi SP SM hMi

16 2 4 7 4 3 6

128 4 10 25 2 11 22 12 10 21

180 4 14 29 2 16 27 14 12 25

256 4 18 33 16 15 30

336 5 14 45 3 16 39 19 17 35

512 5 19 50 3 23 46 24 21 44

696 5 25 56 3 31 54 27 25 51

1024 5 35 66 32 31 62

1600 6 29 93 4 36 83 40 39 78

584 W. Liang et al. / Journal of Computational Physics 194 (2004) 575–587
Comparing Eqs. (7) and (13) for Algorithms I and II, we note that the value of hMi in Algorithm II is

reduced from Algorithm I via decreasing the number of matrix multiplications that are due to the subdi-

vision of polynomials. It requires 2ML � 1 matrix multiplications in Algorithm I because ofML subdivisions

while it requires 2þ 3ð2ml � 1Þ matrix multiplications in Algorithm II. Usually, the difference between the

values of ML and ml is 2 as Table 1 shows. Thus the value of 2ML � 1 is larger than 2þ 3ð2ml � 1Þ.
Comparing Eqs. (7) and (19) for Algorithms I and III, we see that the number of matrix multiplications

associated with subdivision of the polynomial is further reduced in Algorithm III. The polynomial of degree
Npol is divided into 2ML subpolynomials in Algorithm I while it is divided into �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Npol þ 1

p
subpolynomials

in Algorithm III. The value of 2ML � 1 in Algorithm I is larger than
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Npol þ 1

p
� 1 in Algorithm III.

However, associated with the smaller number of subdivisions in Algorithm III is a larger value of SM, and

thus more storage is required in Algorithm III.

We turn next to the CPU timings for evaluation of matrix polynomials using the fast summation al-

gorithms. In this first set of tests, summarized in Table 2, we use dense matrices, and compare the re-

summation methods against simple term by term evaluation. Our test polynomial is the matrix function

f ðXÞ ¼ 1
1�X

expressed as f ðXÞ ¼
PNpol

n¼0 X
n. While the details are not too important here (they are more

important later when we consider sparsity), our test matrices X are from electronic structure theory. They

are the effective Hamiltonians, F, from converged mean theory calculations in a minimal STO-3G basis set

for two alkane oligomers of size C60H122 and C120H242 This yields matrices of dimension 422 and 842 re-

spectively. The electronic structure calculations were performed with a development version of the Q-Chem

program package [21], and the CPU timings were obtained on a 375 MHZ IBM Power-3 workstation

(Model 270).
Table 2

The CPU time for resumming of matrix polynomials by fast algorithms and the conventional term-by-term algorithm

Npol +1 N¼ 422 N¼ 842

Tc Tn Tc Tn

I II III I II III

180 23.27 4.54 4.42 4.21 184.50 34.17 33.21 31.58

256 33.15 5.32 5.26 262.58 39.92 38.37

480 61.85 8.62 8.19 7.87 494.04 63.01 59.09 55.67

1024 132.69 13.0 12.81 1054.14 92.04 88.53

Tc and Tn are CPU times by conventional term-by-term algorithm and new algorithms I or II and III, respectively. CPU time is in

seconds (on IBM RS/6000, 375 MHZ POWER III). N is the dimension of the matrix.

W.Z. Liang et al. / Journal of Computational Physics 194 (2004) 575–587 585
Table 2 records the CPU times for matrix polynomial evaluation, which are denoted as Tn in the fast

algorithms and Tc in the simple term-by-term algorithm for these two matrices as a function of polynomial

degree. We note that the ratio ðTc=TnÞ grows with the degree of the polynomial as approximately pro-
portional to the ratio Npol � 1=hMi. Clearly the CPU time for resumming these matrix polynomials is

dominated by the (cubic scaling) matrix multiply time, as the number of (quadratic scaling) matrix addi-

tions has not been altered. Overall, large computational savings are achieved for polynomials of high

degree. However, the scaling of CPU time with the matrix dimension in the new algorithms is the same as

that in the conventional term-by-term resumming method, and so generally explicit evaluation of the

matrix function in terms of the eigenvectors and eigenvalues would still be computationally preferable.

This situation potentially changes when the matrix (which the function or polynomial depends on)

exhibits a high degree of sparsity. This happens in the electronic structure examples mentioned above [22].
The effective Hamiltonian matrix F is zero between basis functions on sites that are far away and thus

becomes sparse for large molecules. Thus the next step in our testing, summarized in Table 3, is to employ a

sparse matrix multiplication scheme to evaluate the fast resummation algorithms for the same sort of test

matrices we just explored. This is a very interesting test case for two reasons. First, it should be possible to

obtain speedups relative to function evaluation via diagonalization because diagonalization scales cubically

with matrix dimension while polynomial evaluation can scale linearly once a high degree of sparsity is

obtained. Second, both sparse matrix multiplication and sparse addition scale linearly so it will be inter-

esting to see what speedups are observed, since fast summation algorithms reduce the number of costlier
multiplications but do not affect additions.

Table 3 shows these timings for two classes of model electronic structure systems that exhibit sparsity:

one-dimensional linear alkane oligomers (again) and 2-dimensional water clusters. Again, the matrix X

comes from converged mean-field calculations in the minimal STO-3G basis set on an IBM Power-3

375MHz CPU. A blocked sparse matrix multiplication scheme is employed for the matrix multiplications

[23]. In this scheme non-zero submatrices (of size roughly 30 to 60) are obtained by forming many-atom

blocks. These blocks are obtained by a hierarchical boxing scheme, where the system is spatially partitioned

into many boxes with each box containing many atoms. While the fraction of negligible submatrices is
lower than the actual elemental sparsity, the blocking scheme benefits from the use of highly-optimized

level-3 basic linear algebra subroutines (BLAS) for the submatrix multiplications, and eliminates the

overhead of tracking element by element sparsity.
Table 3

The CPU time for resumming the matrix polynomial is shown for a series of linear alkanes and water clusters

Molecule N Npol hMi CPU time (s)

I II III TD Tc I II III

C60H122 422 180 29 27 25 1.35 11.92 2.91 2.75 2.65

C120H242 842 180 29 27 25 12.47 32.63 8.10 7.95 7.84

C240H482 1682 180 29 27 25 124.29 75.65 22.31 21.01 19.12

3� 3 504 180 29 27 25 2.50 27.92 6.60 6.22 5.86

4� 4 896 180 29 27 25 18.61 82.53 22.82 20.37 19.70

5� 5 1400 180 29 27 25 72.62 166.30 49.18 46.72 45.13

6� 6 2016 180 29 27 25 161.33 282.99 84.92 82.32 80.81

The geometry is ideal with C–C bond lengths of 1.54 �A, C–H bond lengths of 1.10 �A and C–C–C bond angles of 109.5�,
respectively. The sparse block size includes 10 carbon atoms in these calculations for linear alkanes and 8 water molecules for water

clusters. The bandwidth of these band diagonal matrices for linear alkanes is about 3 blocks long (i.e., about 200 basis functions). TD is

the CPU time by the matrix diagonalization method.

586 W. Liang et al. / Journal of Computational Physics 194 (2004) 575–587
Our results shed light on both the issues mentioned two paragraphs above. First, the CPU time to either

sum or resum matrix polynomials is significantly reduced by the sparse matrix multiplication scheme, and is

increasing near-linearly for the largest test cases shown. By contrast, the CPU time for evaluating the
matrix function by diagonalizing the matrix X scales as OðN 3Þ (where N is the dimension of the matrix), and

thus the two approaches cross over for the linear alkane oligomers between 60 and 120 for the fast re-

summation algorithms, while a later cross-over between 120 and 180 is found for conventional term-by-

term matrix polynomial evaluation. Second, we see a reduced speedup for the fast summation methods in

Table 3 relative to Table 2. For example, for the alkane corresponding to a matrix size of 842, the speedup

decreases from a factor of almost 6 to a factor of just over 4. This reflects the increased importance of the

matrix addition. However, there is still great value in applying the fast resummation methods as the cost of

matrix multiplications is still significantly larger (scaling as approximately the square of the number of
significant neighbors versus linear in the number of significant neighbors).

Table 3 also shows the computational time for a second model system (planar water clusters) which is

approximately 2-dimensional in real space as opposed to the approximately 1-dimensional alkane oligo-

mers. This differing topology gives more significant neighbors for a given number of atoms (i.e., for a given

matrix dimension). We can anticipate that it will be slightly more difficult to obtain a cross-over between

evaluating the matrix function via diagonalization versus matrix polynomial evaluation because one must

go to larger systems to get comparable sparsity. This is observed in that the cross-over for fast resummation

occur for a larger matrix dimension (i.e., greater than 900 as opposed to less than 840).
Other physical systems or model matrices could have been chosen with still more significant neighbors,

that would exhibit this effect even more strongly (i.e., later cross-overs between diagonalization and

summation-based matrix function evaluation). Additionally this would lead to larger speedups from using

fast resummation relative to term-by-term summation because the increased number of significant neigh-

bors increases the ratio between matrix multiplication and addition times. By contrast, systems with fewer

significant neighbors would exhibit the opposite trends with respect to both of these considerations. The

tradeoff between the sparsity pattern, the precision required (i.e., polynomial length and thus hMi, and the

size of the matrices determines the usefulness (or lack of usefulness) of these fast summation methods in a
given application. In addition, of course, the amount of memory available is the final determinant of

whether or not the additional storage of intermediate matrices in the fast resummation methods can be

tolerated in a particular application. If not, the approach of Van Loan [15] is a good alternative.
5. Conclusions

Fast summation algorithms for evaluating matrix polynomials and matrix functions have been revisited
in this paper. Three algorithms have been presented to reduce the number of matrix multiplications in the

evaluation of matrix polynomials and Chebyshev matrix polynomials. They significantly reduce the total

number of matrix multiplications and thus lead to speed-ups in CPU time relative to simple term-by-term

summation.

These methods can be very useful when the matrices in question are large and sparse. In this case the

usual direct evaluation of the matrix function through all the eigenvalues and eigenvectors of the matrix X

inherently requires a calculation of OðN 3Þ complexity. By contrast evaluation of the matrix polynomial by

fast summation involves only sparse matrix multiplications and additions which both can be evaluated in
only OðNÞ effort if X is sparse. Furthermore, parallelization is fairly straightforward.

We present matrix multiplication counts and computer timings on some model systems to test the

usefulness of the fast summation methods, and to explore the role of matrix sparsity on the viability of these

approaches. A practical application to linear scaling electronic structure calculations is presented elsewhere

[20].

W.Z. Liang et al. / Journal of Computational Physics 194 (2004) 575–587 587
Acknowledgements

WZL would like to express her deep gratitude to Prof. Arup K. Chakraborty and Mr. Baron Peters for

many stimulating discussions relevant to this work. Financial support from BP (WZL) and the Israel-US
Binational Science Foundation (Baer & MHG) as well as support (MHG) from the National Science

Foundation (CHE-9981997) are gratefully acknowledged. This work was also supported by funding from

Q-Chem Inc via an SBIR subcontract from the National Institutes of Health (R43GM069255-01). MHG is

a part owner of Q-Chem Inc.
References

[1] X.P. Li, R.W. Nunes, D. Vanderbilt, Phys. Rev. B 47 (1993) 10891.

[2] R.N. Silver, H. Roeder, A.F. Voter, J.D. Kress, J. Comp. Phys. 124 (1996) 115.

[3] S. Goedecker, L. Colombo, Phys. Rev. Lett. 73 (1994) 122.

[4] T. Helgaker, P. Jørgensen, J. Olsen, Molecular Electronic-Structure Theory, Wiley, Chichester, 2000.

[5] T. Helgaker, H. Larsen, J. Olsen, P. Jørgensen, Chem. Phys. Lett. 327 (2000) 397.

[6] A.M. Niklasson, Phys. Rev. B 66 (2002) 155115.

[7] A.H.R. Palser, D. Manolopoulos, Phys. Rev B 58 (1998) 12704.

[8] H. Tal-ezer, R. Kosloff, J. Chem. Phys. 81 (1984) 3967.

[9] R. Kosloff, H. Tal-ezer, Chem. Phys. Lett. 127 (1986) 233.

[10] R.N. Silver, H. R€oder, Int. J. Mol. Phys. C 5 (1994) 735.

[11] Y. Motome, N. Furukawa, J. Phys. Soc. Jpn. 68 (1999) 3853.

[12] T.S. Motzkin, Bull. Amer. Math. Soc. 61 (1955) 163.

[13] S. Winograd, Comm. Pure Appl. Math. 23 (1970) 165.

[14] M.S. Paterson, L.J. Stockmeyer, SIAM J. Comp. 2 (1973) 60.

[15] C.F. Van Loan, IEEE Trans. Auto. Cont. AC-24 (1979) 320.

[16] G.H. Golub, C.F. Van Loan, Matrix Computations, third ed., Johns Hopkins University Press, 1996.

[17] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortrain 77, Cambridge University Press, New

York, 1996.

[18] R. Kosloff, Ann. Rev. Phys. Chem. 45 (1994) 145.

[19] R. Baer, M. Head-Gordon, J. Chem. Phys. 107 (1997) 10003;

Phys. Rev. Lett. 79 (1997) 3962;

J. Chem. Phys. 109 (1998) 10159.

[20] W.Z. Liang, C. Saravanan, Y. Shao, R. Baer, A.T. Bell, M. Head-Gordon, J. Chem. Phys. 119 (2003) 4117.

[21] J. Kong, C.A. White, A.I. Krylov, C.D. Sherrill, R.D. Adamson, T.R. Furlani, M.S. Lee, A.M. Lee, S.R. Gwaltney, T.R. Adams,

C. Ochsenfeld, A.T.B. Gilbert, G.S. Kedziora, V.A. Rassolov, D.R. Maurice, N. Nair, Y. Shao, N.A. Besley, P.E. Maslen, J.P.

Dombroski, H. Daschel, W. Zhang, P.P. Korambath, J. Baker, E.F.C. Byrd, T. Van Voorhis, M. Oumi, S. Hirata, C.-P. Hsu, N.

Ishikawa, J. Florian, A. Warshel, B.G. Johnson, P.M.W. Gill, M. Head-Gordon, J.A. Pople, J. Comput. Chem. 21 (2000) 1532.

[22] P.E. Maslen, C. Ochsenfeld, C.A. White, M.S. Lee, M. Head-Gordon, J. Phys. Chem. A 102 (1998) 2215.

[23] C. Saravanan, Y. Shao, R. Baer, P.N. Ross, M. Head-Gordon, J. Comp. Chem. 24 (2003) 618.

	Fast methods for resumming matrix polynomials and Chebyshev matrix polynomials
	Introduction
	Fast methods for resumming matrix polynomials
	Algorithm I - recursive binary subdivision
	Algorithm II - separate subdivision
	Algorithm III - Npol+1timesNpol+1 scheme

	Fast algorithms for resumming Chebyshev matrix polynomials
	Results and discussion
	Conclusions
	Acknowledgements
	References

